Stewart Calculo 1 Pdf
LtoI.jpg' alt='Stewart Calculo 1 Pdf' title='Stewart Calculo 1 Pdf' />Ian Stewart, autor de obras como De aqu al infinito Las matemticas de hoy o Locos por las matemticas Juegos y diversiones matemticas, el autor nos explica. Network Manager. CASING SLIP HANGER CALCULATIONS. Download as PDF File. Text File. txt or read online. Age of the Earth Wikipedia. The age of the Earth is approximately 4. This dating is based on evidence from radiometric age dating of meteorite5 material and is consistent with the radiometric ages of the oldest known terrestrial and lunarsamples. Following the development of radiometric age dating in the early 2. The oldest such minerals analyzed to datesmall crystals of zircon from the Jack Hills of Western Australiaare at least 4. Calciumaluminium rich inclusionsthe oldest known solid constituents within meteorites that are formed within the Solar Systemare 4. It is hypothesised that the accretion of Earth began soon after the formation of the calcium aluminium rich inclusions and the meteorites. Baixe grtis o arquivo clculo I. Email Sender Deluxe Full Cracked. VICTOR no curso de Engenharia Eltrica na UFPB. Sobre conceitos e exerccios sobre clculo I. C%C3%A1lculo-1-%E2%80%93-Ron-Larson-Robert-Hostetler-%E2%80%93-9ed.jpg' alt='Stewart Calculo 1 Pdf' title='Stewart Calculo 1 Pdf' />Because the exact amount of time this accretion process took is not yet known, and the predictions from different accretion models range from a few million up to about 1. Earth is difficult to determine. It is also difficult to determine the exact age of the oldest rocks on Earth, exposed at the surface, as they are aggregates of minerals of possibly different ages. Development of modern geologic concepts. El libro o archivo PDF incluye calculo diferencial e integral. Digo se q es precalculo. Quiero entender q te enfocan desde el principio del clculo. Universidad nacional de ingenierafacultad de ingeniera geolgica, minera y metalrgica escuela profesional de ingeniera geolgica. READ Free James Stewart Calculus 5th Edition Book James Stewart Calculus 5th Edition PDF Download PDF James Stewart Calculus 5th Edition Book without any digging. Studies of strata, the layering of rocks and earth, gave naturalists an appreciation that Earth may have been through many changes during its existence. These layers often contained fossilized remains of unknown creatures, leading some to interpret a progression of organisms from layer to layer. Nicolas Steno in the 1. His observations led him to formulate important stratigraphic concepts i. In the 1. 79. 0s, William Smith hypothesized that if two layers of rock at widely differing locations contained similar fossils, then it was very plausible that the layers were the same age. William Smiths nephew and student, John Phillips, later calculated by such means that Earth was about 9. In the mid 1. 8th century, the naturalist Mikhail Lomonosov suggested that Earth had been created separately from, and several hundred thousand years before, the rest of the universe. Lomonosovs ideas were mostly speculative. In 1. 77. 9 the Comte du Buffon tried to obtain a value for the age of Earth using an experiment He created a small globe that resembled Earth in composition and then measured its rate of cooling. This led him to estimate that Earth was about 7. Other naturalists used these hypotheses to construct a history of Earth, though their timelines were inexact as they did not know how long it took to lay down stratigraphic layers. In 1. 83. 0, geologist Charles Lyell, developing ideas found in James Huttons works, popularized the concept that the features of Earth were in perpetual change, eroding and reforming continuously, and the rate of this change was roughly constant. This was a challenge to the traditional view, which saw the history of Earth as static,citation needed with changes brought about by intermittent catastrophes. Many naturalists were influenced by Lyell to become uniformitarians who believed that changes were constant and uniform. Early calculations. In 1. 86. 2, the physicist William Thomson, 1st Baron Kelvin published calculations that fixed the age of Earth at between 2. He assumed that Earth had formed as a completely molten object, and determined the amount of time it would take for the near surface to cool to its present temperature. His calculations did not account for heat produced via radioactive decay a process then unknown to science or, more significantly, convection inside the Earth, which allows more heat to escape from the interior to warm rocks near the surface. Even more constraining were Kelvins estimates of the age of the Sun, which were based on estimates of its thermal output and a theory that the Sun obtains its energy from gravitational collapse Kelvin estimated that the Sun is about 2. William Thomson Lord KelvinGeologists such as Charles Lyell had trouble accepting such a short age for Earth. For biologists, even 1. In Darwins theory of evolution, the process of random heritable variation with cumulative selection requires great durations of time. According to modern biology, the total evolutionary history from the beginning of life to today has taken place since 3. In a lecture in 1. Darwins great advocate, Thomas H. Huxley, attacked Thomsons calculations, suggesting they appeared precise in themselves but were based on faulty assumptions. The physicist Hermann von Helmholtz in 1. Simon Newcomb in 1. Sun to condense down to its current diameter and brightness from the nebula of gas and dust from which it was born. Their values were consistent with Thomsons calculations. However, they assumed that the Sun was only glowing from the heat of its gravitational contraction. The process of solar nuclear fusion was not yet known to science. In 1. 89. 5 John Perry challenged Kelvins figure on the basis of his assumptions on conductivity, and Oliver Heaviside entered the dialogue, considering it a vehicle to display the ability of his operator method to solve problems of astonishing complexity. Other scientists backed up Thomsons figures. Charles Darwins son, the astronomer George H. Darwin, proposed that Earth and Moon had broken apart in their early days when they were both molten. He calculated the amount of time it would have taken for tidal friction to give Earth its current 2. His value of 5. 6 million years added additional evidence that Thomson was on the right track. The last estimate Thomson gave, in 1. In 1. 89. 9 and 1. John Joly calculated the rate at which the oceans should have accumulated salt from erosion processes, and determined that the oceans were about 8. Radiometric dating. Overview. By their chemical nature, rockminerals contain certain elements and not others but in rocks containing radioactive isotopes, the process of radioactive decay generates exotic elements over time. By measuring the concentration of the stable end product of the decay, coupled with knowledge of the half life and initial concentration of the decaying element, the age of the rock can be calculated. Typical radioactive end products are argon from decay of potassium 4. If the rock becomes molten, as happens in Earths mantle, such nonradioactive end products typically escape or are redistributed. Thus the age of the oldest terrestrial rock gives a minimum for the age of Earth, assuming that no rock has been intact for longer than the Earth itself. Convective mantle and radioactivity. In 1. 89. 2, Thomson had been made Lord Kelvin in appreciation of his many scientific accomplishments. Kelvin calculated the age of the Earth by using thermal gradients, and he arrived at an estimate of about 1. He did not realize that the Earth mantle was convecting, and this invalidated his estimate. In 1. 89. 5, John Perry produced an age of Earth estimate of 2 to 3 billion years using a model of a convective mantle and thin crust. Kelvin stuck by his estimate of 1. The discovery of radioactivity introduced another factor in the calculation. After Henri Becquerels initial discovery in 1. Marie and Pierre Curie discovered the radioactive elements polonium and radium in 1. Pierre Curie and Albert Laborde announced that radium produces enough heat to melt its own weight in ice in less than an hour. Geologists quickly realized that this upset the assumptions underlying most calculations of the age of Earth. Integral Wikipdia, a enciclopdia livre. No clculo, a integralnota 1 de uma funo foi criada originalmente para determinar a rea sob uma curva no plano cartesiano1 e tambm surge naturalmente em dezenas de problemas da fsica, como por exemplo na determinao da posio em todos os instantes de um objeto, se for conhecida a sua velocidade instantnea em todos os instantes. Diferentemente da noo associada de derivao, existem vrias definies para a integrao, todas elas visando a resolver alguns problemas conceituais relacionados a limites, continuidade e existncia de certos processos utilizados na definio. Estas definies diferem porque existem funes que podem ser integradas segundo alguma definio, mas no podem segundo outra. O processo de se calcular a integral de uma funo chamado de integrao. A integral indefinida tambm conhecida como antiderivada. Integrando a rea de uma funo abaixo de uma curva. Seja fdisplaystyle f uma funo contnua definida no intervalo a,bdisplaystyle a,b. A integral definida desta funo denotada como3. Integral da funo senx. O valor da soma de Riemann truncada em ndisplaystyle n sub intervalos indicada por Sdisplaystyle S. A ideia desta notao utilizando um S comprido generalizar a noo de somatrio4. Isto porque, intuitivamente, a integral de fxdisplaystyle fx sobre o intervalo a,bdisplaystyle a,b pode ser entendida como a soma de pequenos retngulos de base xdisplaystyle Delta x tendendo a zero e altura fxidisplaystyle fxi, onde o produto fxixdisplaystyle fxiDelta x a rea deste retngulo. A soma de todas estas pequenas reas reas infinitesimais, fornece a rea entre a curva yfxdisplaystyle yfx e o eixo das abscissas. Mais precisamente, pode se dizer que a integral acima o valor limite da soma 3Em linguagem matemtica. Em portugusabfxdxlimx0i0nfxixdisplaystyle int abfxdxlim Delta xto 0sum i0nfxiDelta xA integral de fxdisplaystyle fx no intervalo a,b igual ao limite do somatrio de cada um dos valores que a funo fx assume, de 0 a n, multiplicados por xdisplaystyle Delta x. O que se espera que quando n for muito grande o valor da soma acima se aproxime do valor da rea abaixo da curva e, portanto, da integral de fxdisplaystyle fx no intervalo. Ou seja, que o limite esteja definido. A definio de integral aqui apresentada chamada de soma de Riemann, mas h outras formas equivalentes. Delta xfrac b anComprimento dos pequenos subintervalos nos quais se divide o intervalo a,b. Os extremos destes intervalos so os nmerosx. Delta xto 0icdot Delta xaEquivale a um ponto num intervalo de adisplaystyle a at bdisplaystyle b da funo quando o valor do nmero de termos ndisplaystyle n tende a infinito ou equivalentemente quando o valor de xdisplaystyle Delta x tende a 0,nesse caso a letra idisplaystyle i define o ensimo termo de uma sequncia infinita ligada aos valores que cada xidisplaystyle xi assumir. Valor altura da funo fxdisplaystyle fx quando x igual ao ponto amostral xidisplaystyle xi, definido como um ponto que est no subintervalo xi1,xidisplaystyle leftxi 1,xiright podendo at mesmo ser um destes pontos extremos do subintervalo. Uma integral definida pode ser prpria ou imprpria, convergente ou divergente. Neste ltimo caso, ela representa uma rea infinita. A integral indefinida de fxdisplaystyle fx a funo ou famlia de funes definida por 56 fxdxFxCdisplaystyle int fxdxFxCem que Cdisplaystyle C uma constante indeterminada e Fxdisplaystyle Fx uma antiderivada de fxdisplaystyle fx, i. Fxfxdisplaystyle Fxfx. A notao fxdxdisplaystyle int fxdx lida como a integral de fxdisplaystyle fx em relao a xdisplaystyle x. O Teorema Fundamental do Clculo estabelece que se fxdisplaystyle fx for contnua em a,bdisplaystyle a,b, ento7 abfxdxFbFadisplaystyle int abfxdxFb Faonde, Fxdisplaystyle Fx uma antiderivada de fxdisplaystyle fx. De forma mais geral, este teorema afirma que se fxdisplaystyle fx uma funo contnua em um intervalo Idisplaystyle I ento, para qualquer aIdisplaystyle ain I, temos que Fxaxftdtdisplaystyle Fxint axftdt uma antiderivada de fxdisplaystyle fx definida para todo xIdisplaystyle xin I. Ou seja ddxaxftdtfxdisplaystyle frac ddxleftint axftdtrightfx. Seja fxdisplaystyle fx uma funo no negativa definida em um intervalo Idisplaystyle I e aIdisplaystyle ain I. Para cada ponto x adisplaystyle x a, a rea Adisplaystyle A sob o grfico de fxdisplaystyle fx restrita ao intervalo a,xdisplaystyle a,x funo de xdisplaystyle x, i. AAxdisplaystyle AAx. Office 2003 Basic Iso. Neste caso, como consequncia do Teorema Fundamental do Clculo temos que a derivada da rea Adisplaystyle A igual a funo fxdisplaystyle fx, i. Axfxdisplaystyle Axfx. Exemplo Cada membro da funo tratado como uma funo em separado, para em seguida ser efetuada a soma entre eles e gerar outra funo, a funo na qual se substitui o valor de X pelos valores do intervalo. Feito isso, usa se o teorema do clculo para chegar ao valor da integral. No intervalo 0,3fxx. Aqui usa se a Frmula da Primitiva em cada integral. Gera se a outra funo, que ser usada para substituir os valores do intervalo. Para x 0fa0displaystyle fa0Para x 3. Aproximaes da integral de x de 0 a 1, com 5 amostras direita acima e 1. Estas so as integrais de algumas das funes mais comuns ab. Integral da funo constanteabxdx1. Integral da funo fx x Por definio a barra fxabdisplaystyle fxab utilizada com o significado da diferena fbfadisplaystyle fb faPara definies do processo de integrao mais rigorosas veja os links abaixo Em Portugal, a comunidade tcnica utiliza integral como nome masculino. Por exemplo o integral de f x em a, b. Referncias ab. Charles Doss, An Introduction to the Lebesgue Integral, em linhaJohn Radford Young, The Elements of the Integral Calculus With Its Applications to Geometry and to the Summation of Infinite Series. Intended for the Use of Mathematical Students in Schools and Universities 1. Section I, On the Integration of Differential Expressions of a Single Variable, Chapter I, Fundamental Principles of Integration, p. Stewart 2. 00. 2, p. W3. C 2. 00. 6, Arabic mathematical notation em inglsPiskounov, Nikolai Semenovich Clculo Diferencial e Integral Edies Lopes da Silva 1. Stewart 2. 00. 2, p. Howard, Anton 2. Clculo Volume 1 8 ed. S. l. Bookman. ISBN 9.